

Reframing Climate Change: How recent emission trends & the latest science change the debate

Prof. Kevin Anderson

Tyndall Centre Universities of Manchester & East Anglia

Dr. Alice Bows Sustainable Consumption Institute (SCI) University of Manchester

June 2009

Talk outline

1) Dangerous climate change - post-Copenhagen

- 2) Cumulative emissions a new chronology
- 3) Misplaced optimism *ignoring the bean counters*
- 4) Global GHG pathways *impossible challenges*?
- 5) Provisional thoughts on implications for UK transport

What is dangerous climate change?

UK & EU define this as 2°C

But:

- ... 2°C impacts at the worst end of the range
- ... ocean acidification devastating even at 400-450ppmv CO₂
- ... failure to mitigate leaves 2°C stabilisation highly unlikely

Impacts around 2°C

- Destruction of vast majority of coral reefs
- Billion plus people suffer water stress & risk coastal flooding
- 30% species at risk of extinction
- Cereal production reduces in low latitudes
- Land becomes a carbon source
- Risk triggering tipping points (e.g. albedo, permafrost, etc)

Emission-reduction targets

Centre

lvndall

UK, EU & Global - long term reduction targets

- UK's 80% reduction in CO_2e by 2050
- *EU* 60%-80% reduction in CO₂ e by 2050
- Bali 50% global reduction in CO₂e by 2050
- CO₂ stays in atmosphere for 100+ years, hence long-term targets are highly misleading

Put bluntly ...

- 2050 reduction unrelated to avoiding dangerous climate change (2°C)
- cumulative emissions that matter (i.e. carbon budget)
- this fundamentally rewrites the chronology of climate change
 - from long term gradual reductions
 - to urgent & radical reductions

How does this 'scientifically-credible' way of thinking alter the challenge we face?

Tyndall's emission scenarios (2000-2100 CO₂e)

Latest IPCC-based scientific understanding of CC
 Latest emissions data (prior to economic crisis)

yndall[°]Centre for Climate Change Research

Tyndall's emission scenarios (2000-2100 CO₂e)

To consider:

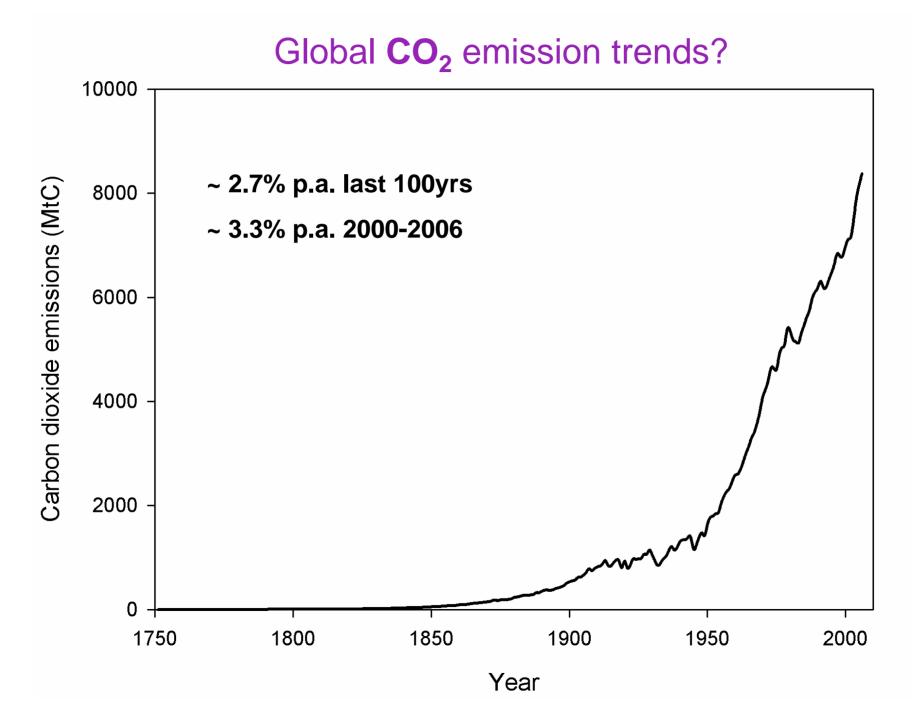
CO₂ emissions from landuse (deforestion)
 Non-CO₂ GHGs (principally agriculture)

What emission space remains for: 3. CO₂ emissions from energy?

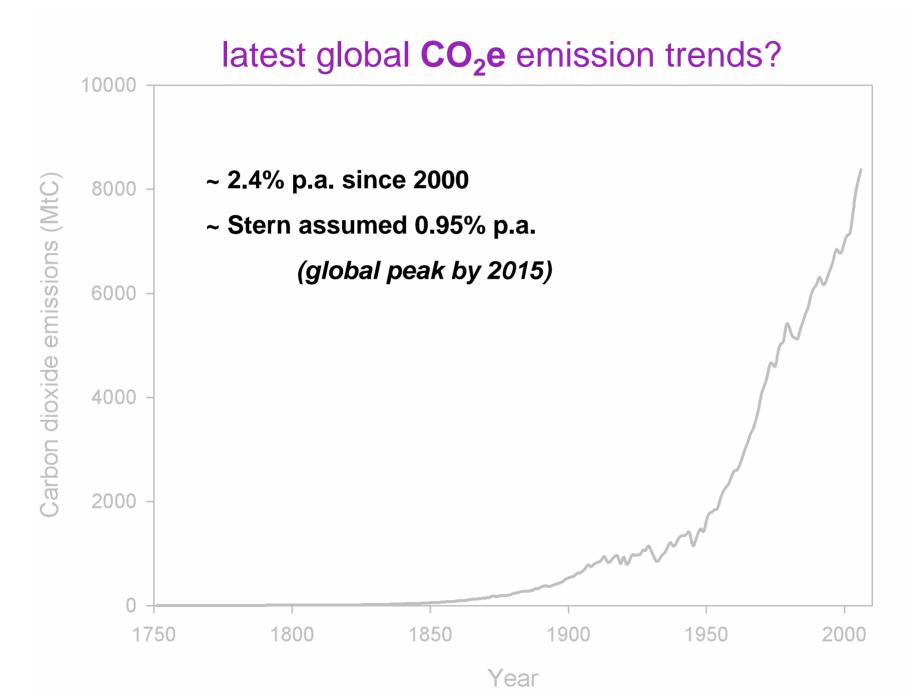
Tyndall's emission scenarios (2000-2100 CO₂e)

Included very optimistic:

- land-use & forestry emission scenarios (deforestation)
- non-CO₂ greenhouse gas emissions (agriculture)
- Global CO₂e emissions peaks of 2015/20/25?



factoring in...


the latest emissions data

what is the scale of the global 'problem' we now face?

It's getting worse!

... appears we're denying its happening

What does:

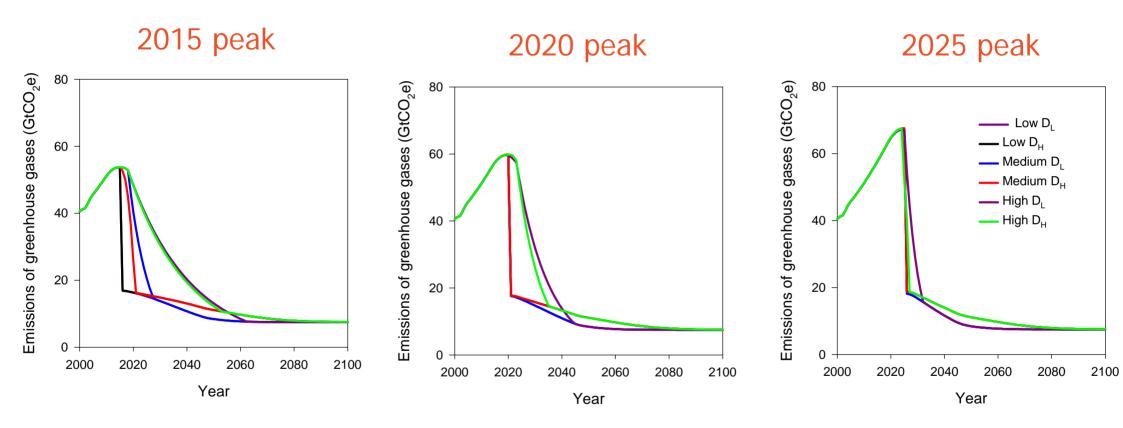
this failure to reduce emissions & the latest science on cumulative emissions

Say about a 2°C future?

450ppmv CO₂e

greenhouse gas emission pathways

50% chance of 2°C

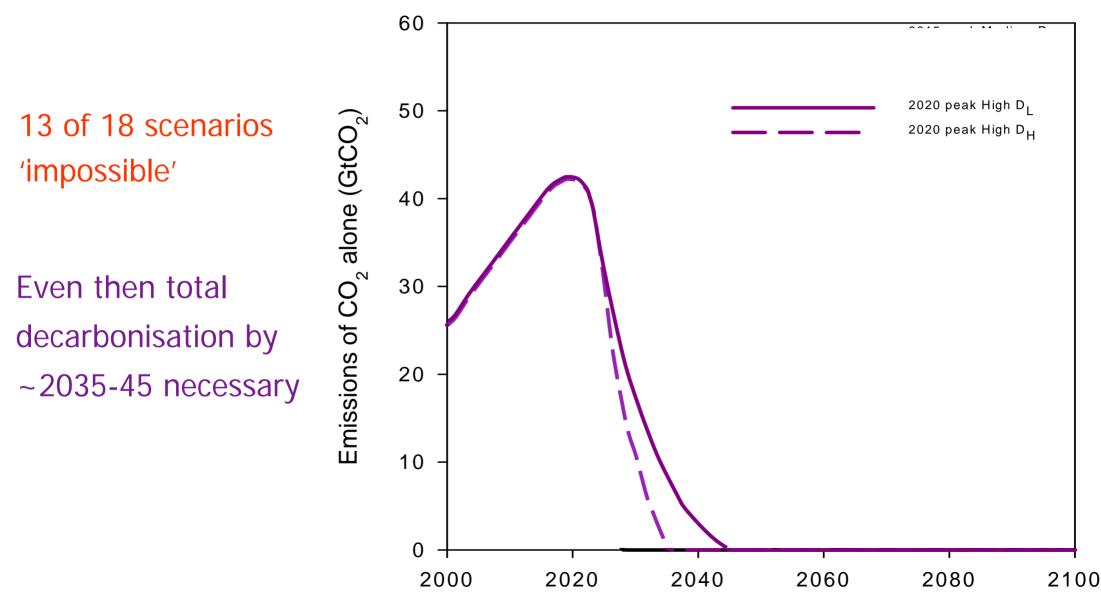


Global carbon budget for 2000-2100

... for 450ppmv CO_2e


~ 1400 to 2200 GtCO₂e

Total greenhouse gas emission pathways


(Anderson & Bows. 2008 Philosophical Transactions A of the Royal Society. 366. pp.3863-3882)

... for 450ppmvCO₂e & 2020 peak

Year

... and for energy emissions? (with 2020 peak)

Year

550 & 650 ppmv

greenhouse gas emission pathways

50% chance of 3 & 4°C respectively

For **3°C** & emissions peaking by 2020: ... **9%** annual reductions in CO₂ from energy

For 4°C & emissions peaking by 2020: ... 3.5% annual reductions in CO₂ from energy

What are the precedents for such reductions?

Annual reductions of greater than 1% p.a. have only

"been associated with economic recession or upheaval" Stern 2006

 UK gas & French 40x nuclear ~1% p.a. reductions (ex. aviation & shipping)

Collapse Soviet Union economy ~5% p.a. reductions

Urgent need for reality check

If economic growth not possible with 6% p.a carbon reduction ... then

need planned economic 'contraction' to stabilise even at ~4°C

Urgent need for reality check

- Focus on win-win opportunities is misplaced
- Significant 'pain' & many losers
- 4°C is not 'business as usual'
 but all orthodox reduction in place & successful
- Adaptation agenda needs completely rewriting

Urgent need for reality check

Both mitigation & adaptation rates are:

- beyond what we have been prepared to countenance
- without historical precedent

We've entered new and unchartered territory

Provisional thoughts on implications of Tyndall analysis for UK transport

Aviation and Shipping

approximately same emissions as private cars

 Moratorium on airport & sea port expansion (Heathrow and lock-in)

 Aviation/Shipping growth matched by efficiency gains (*i.e. stabilised emissions in short-medium term,* reductions from 2025 onwards)

- Mandatory efficiency standard (all new cars max. 130g/km by 2010, 6% tightening p.a) 70g/km by 2020 35g/km by 2030
- Automatic enforcement of speed limits (onboard regulators)
- High occupancy lanes, car-free city's, CO₂ savvy land-use planning (transport, housing, work)

Freight

- Reject 'just-in-time' its flow-rates that matter not 'speed (canals can manage same flow rate as trucks)
- Mandatory efficiency standard
- Strict enforcement of speed limits
- Penalties for low load factors?)

... ultimately for transport within the UK and other OECD nations to play its 'fair' part in avoiding even a 4°C future, its absolute emissions need to be reducing by at least **6% p.a** - beginning in the next few years!

Reframing Climate Change: How recommendation trends & the latest science change the debate

Kevin Anderson & Alice Bows